50000家學校 1000萬學生的選擇 美國高考（SAT）數學多項式函數考點實例     點擊圖片查看原圖
 學費： 0元 優惠價： 0元 學時： 授課機構： 本校 上課地點： 西安 交通路線： 雁塔區科技路大都薈7號樓B座2304，延平門地鐵D2出口直走300米 師資力量： 行業頂尖名師授課 有效期至： 長期有效 最后更新： 2019-06-26 15:47 瀏覽次數： 31   您還沒有登錄，請登錄后查看聯系方式 發布培訓信息 推廣培訓課程 建立學校主頁 在線咨詢課程   Recall that if K is a zero of a polynomial function defined as y=f(x), then x-k is a factor of f.

A polynomial function P has zeros -3,3/2,and 8. Which of the following polynomial functions could define P?

A. P(x)=-3(x-3/2)(x-8) B.P(x)=-(x-3)(x+3/2)(x+8) C. P(x)=(x+3)(3x-2)(x-8) D. P(x)=(x+3)(2x-3)(x-8)

Since the polynomial function P has the zeros -3,3/2,and 8,it follows that (x-(-3)),(x-3/2),and (x-8) must be factors of P.

Therefore, we can define P as P(x)=a(x+3)(x-3/2)(x-8), wher a is a nonzero constant.

A constant factor, such as a, does not affect the zeros of the polynomial function. In order to rewrite the equation with integral coeffecients, let a=2.

If a=2, it follows that

P(x)=a(x+3)(x-3/2)(x-8)

=2(x+3)(x-3/2)(x-8)

=(x+3)(2x-3)(x-8).

so the polynomial that could define P is P(x)=(x+3)(2x-3)(x-8).   ?